
Trac and mod_wsgi
Important note: Please use either version 1.6, 2.4 or later of mod_wsgi. Versions prior to 2.4 in the 2.X branch
have problems with some Apache configurations that use WSGI file wrapper extension. This extension is used in
Trac to serve up attachments and static media files such as style sheets. If you are affected by this problem
attachments will appear to be empty and formatting of HTML pages will appear not to work due to style sheet files
not loading properly. See mod_wsgi tickets #100 and #132.

 mod_wsgi is an Apache module for running WSGI-compatible Python applications directly on top of Apache. The
mod_wsgi adapter is written completely in C and provides significantly better performance than using existing
WSGI adapters for mod_python or CGI.

Trac can be run on top of mod_wsgi with the help of the following application script, which is just a Python file,
though usually saved with a .wsgi extension). This file can be created using trac-admin <env> deploy <dir>
command which automatically substitutes required paths.

import os

os.environ['TRAC_ENV'] = '/usr/local/trac/mysite'
os.environ['PYTHON_EGG_CACHE'] = '/usr/local/trac/mysite/eggs'

import trac.web.main
application = trac.web.main.dispatch_request

The TRAC_ENV variable should naturally be the directory for your Trac environment (if you have several Trac
environments in a directory, you can also use TRAC_ENV_PARENT_DIR instead), while the
PYTHON_EGG_CACHE should be a directory where Python can temporarily extract Python eggs.

Important note: If you're using multiple .wsgi files (for example one per Trac environment) you must not use
os.environ['TRAC_ENV'] to set the path to the Trac environment. Using this method may lead to Trac
delivering the content of another Trac environment. (The variable may be filled with the path of a previously
viewed Trac environment.) To solve this problem, use the following .wsgi file instead:

import os

os.environ['PYTHON_EGG_CACHE'] = '/usr/local/trac/mysite/eggs'

import trac.web.main
def application(environ, start_response):
 environ['trac.env_path'] = '/usr/local/trac/mysite'

return trac.web.main.dispatch_request(environ, start_response)

For clarity, you should give this file a .wsgi extension. You should probably put the file in it's own directory,
since you will open up its directory to Apache. You can create a .wsgi files which handles all this for you by
running the TracAdmin command deploy.

If you have installed trac and eggs in a path different from the standard one you should add that path by adding the
following code on top of the wsgi script:

import site
site.addsitedir('/usr/local/trac/lib/python2.4/site-packages')

Trac and mod_wsgi 1

http://code.google.com/p/modwsgi/issues/detail?id=100
http://code.google.com/p/modwsgi/issues/detail?id=132
http://code.google.com/p/modwsgi/

Change it according to the path you installed the trac libs at.

After you've done preparing your wsgi-script, add the following to your httpd.conf.

WSGIScriptAlias /trac /usr/local/trac/mysite/apache/mysite.wsgi

<Directory /usr/local/trac/mysite/apache>
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
</Directory>

Here, the script is in a subdirectory of the Trac environment. In order to let Apache run the script, access to the
directory in which the script resides is opened up to all of Apache. Additionally, the WSGIApplicationGroup
directive ensures that Trac is always run in the first Python interpreter created by mod_wsgi; this is necessary
because the Subversion Python bindings, which are used by Trac, don't always work in other subinterpreters and
may cause requests to hang or cause Apache to crash as a result. After adding this configuration, restart Apache,
and then it should work.

To test the setup of Apache, mod_wsgi and Python itself (ie. without involving Trac and dependencies), this simple
wsgi application can be used to make sure that requests gets served (use as only content in your .wsgi script):

def application(environ, start_response):
 start_response('200 OK',[('Content-type','text/html')])
 return ['<html><body>Hello World!</body></html>']

See also the mod_wsgi installation instructions for Trac.

For troubleshooting tips, see the mod_python troubleshooting section, as most Apache-related issues are quite
similar, plus discussion of potential application issues when using mod_wsgi.

Note: using mod_wsgi 2.5 and Python 2.6.1 gave an Internal Server Error on my system (Apache 2.2.11 and Trac
0.11.2.1). Upgrading to Python 2.6.2 (as suggested here) solved this for me
-- Graham Shanks

Trac with PostgreSQL

When using the mod_wsgi adapter with multiple Trac instances and PostgreSQL (or MySQL?) as a database
back-end the server can get a lot of open database connections. (and thus PostgreSQL processes)

A workable solution is to disabled connection pooling in Trac. This is done by setting poolable = False in
trac.db.postgres_backend on the PostgreSQLConnection class.

But it's not necessary to edit the source of trac, the following lines in trac.wsgi will also work:

import trac.db.postgres_backend
trac.db.postgres_backend.PostgreSQLConnection.poolable = False

Now Trac drops the connection after serving a page and the connection count on the database will be kept minimal.

Trac with PostgreSQL 2

http://code.google.com/p/modwsgi/wiki/IntegrationWithTrac
http://code.google.com/p/modwsgi/wiki/ApplicationIssues
http://www.mail-archive.com/modwsgi@googlegroups.com/msg01917.html

Getting Trac to work nicely with SSPI and 'Require Group'

If like me you've set Trac up on Apache, Win32 and configured SSPI, but added a 'Require group' option to your
apache configuration, then the SSPIOmitDomain option is probably not working. If its not working your usernames
in trac are probably looking like 'DOMAIN\user' rather than 'user'.

This WSGI script 'fixes' things, hope it helps:

import os
import trac.web.main

os.environ['TRAC_ENV'] = '/usr/local/trac/mysite'
os.environ['PYTHON_EGG_CACHE'] = '/usr/local/trac/mysite/eggs'

def application(environ, start_response):
 if "\\" in environ['REMOTE_USER']:
 environ['REMOTE_USER'] = environ['REMOTE_USER'].split("\\", 1)[1]
 return trac.web.main.dispatch_request(environ, start_response)

See also: TracGuide, TracInstall, FastCGI, ModPython, TracNginxRecipe

Getting Trac to work nicely with SSPI and 'Require Group' 3

http://trac.edgewall.org/intertrac/TracNginxRecipe

	tmp9rfTxwtracpdf

